Two-Dimensional Micromachined Flow Sensor Array for Fluid Mechanics Studies
نویسندگان
چکیده
We discuss two types of micromachined flow sensors realized by using novel microfabrication processes—a hot-wire anemometer ~based on thermal transfer! and a biologically inspired flow sensor ~based on momentum transfer!. Both sensors are enabled by a new, efficient three-dimensional assembly technique called the plastic deformation magnetic assembly method. The sensors can be packaged in high-density, two-dimensional arrays efficiently, with each sensor node capable of performing two-component or threecomponent flow sensing. We first discuss the development of new hot-wire anemometers ~HWA!. The HWA uses a thermal element ~hot wire! that is made of Pt/Ni/Pt film with a measured temperature coefficient of resistance of 2,700 ppm/°C. The thermal element is elevated out of plane by using support beams made of polyimide, a polymer material. Both steady-state and transient characteristics of the sensor have been experimentally obtained. The second type of flow sensor is based on momentum transfer principles and inspired by fish lateral line sensors. Each sensor consists of a vertical cilium attached to a horizontal cantilever. Fluid flow imparts moment on the vertical cilium, and causes the horizontal cantilever to bend. The fabrication process and preliminary measurement data are presented. DOI: 10.1061/~ASCE!0893-1321~2003!16:2~85! CE Database subject headings: Sensors; Fluid mechanics; Fluid flow.
منابع مشابه
Micromachined fluid ejector arrays for biotechnological and biomedical applications
In this paper, we present a micromachined flextensional droplet ejector array for use to eject liquids. By placing a fluid behind one face of a vibrating circular plate that has an orifice at its center, we achieve contiuuous and drop-ondemand ejection of the fluid. We present results of ejection of water and isopropanol. The ejector is harmless to sensitive fluids and can he used to eject fuel...
متن کاملMicromachined Fluid Inertial Sensors
Micromachined fluid inertial sensors are an important class of inertial sensors, which mainly includes thermal accelerometers and fluid gyroscopes, which have now been developed since the end of the last century for about 20 years. Compared with conventional silicon or quartz inertial sensors, the fluid inertial sensors use a fluid instead of a solid proof mass as the moving and sensitive eleme...
متن کاملAnalysis of Transient Flow in the Case of Secondary Injection for Transient Vector Control (RESEARCH NOTE)
The purpose of this paper is to analyze the flow field structure in transient state and performance of secondary injection system for thrust vectoring in divergent section of a two-dimensional nozzle. Secondary injection for thrust vectoring in a two-dimensional nozzle is studied by solving three-dimensional Reynolds-averaged equations by means of fluent solver. Spalart-allmaras model was used ...
متن کاملNumerical Scrutinization of Three Dimensional Casson-Carreau Nano Fluid Flow
This study presents the computational analysis of three dimensional Casson and Carreau nanofluid flow concerning the convective conditions. To do so, the flow equations are modified to nonlinear system of ODEs after using appropriate self-similarity functions. The solution for the modified system is evaluated by numerical techniques. The results show the impacts of involving variables on flow c...
متن کاملA finite elements study on the role of primary cilia in sensing mechanical stimuli to cells by calculating their response to the fluid flow
The primary cilium which is an organelle in nearly every cell in the vertebrate body extends out of the cell surface like an antenna and is known as cell sensor of mechanical and chemical stimuli. In previous numerical simulations, researchers modeled this organelle as a cantilevered beam attached to the cell surface. In the present study, however, we present a novel model that accommodates for...
متن کامل